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Weakly nonlinear stability of interfacial waves propagating between two 
electrified inviscid fluids influenced by a vertical periodic forcing and a constant 
horizontal electric field is studied. Based on the method of multiple-scale 
expansion for a small-amplitude periodic force, two parametric nonlinear 
Schrtdinger equations with complex coefficients are derived in the resonance 
cases. A standard nonlinear Schrtdinger equation with complex coefficients is 
derived in the nonresonance case. A temporal solution is carried out for the 
parametric nonlinear Schrtdinger equation. The stability analysis is discussed 
both analytically and numerically. 

1. I N T R O D U C T I O N  

Because o f  the wide range o f  important industrial applications for the 
Rayle igh-Taylor  instability, there has been a growing interest in recent years 
in the study of  interfacial waves o f  a fluid subject to a horizontal or  vertical 
oscillation from the viewpoint o f  an important variety of  scientific and techni- 
cal problems. Very few theoretical studies have been done to understand the 
stage of  interfacial waves when subject to extemal periodic force. Based on a 
linear theory, Benjamin and Ursell (1954) explained the excitation o f  standing 
waves of  an inviscid liquid associated with the instability o f  the Mathieu 
equation for a parametric resonant mode. 
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Kelly (1965) considered the effect of an oscillatory component in the 
basic velocity on the stability of the classical Kelvin-Helmholtz profile. He 
deduced that when the differences in the mean speed are below the steady 
critical speed for instability but are long compared with the amplitude of the 
fluctuations, parametric amplification of waves at the interface occurs. 

Wu et  al. (1984) studied experimentally the subharmonic excitation of 
solitary waves in a long channel subject to a vertical periodic oscillation with 
an appropriate frequency and amplitude. Ciliberto and Gollub (1985) carried 
out an experiment on parametric excitation of a cylindrical fluid layer in a 
circular vessel. They studied excitation of a pair of noncircularly symmetric 
modes and found an interaction between the two modes in which the wave 
pattern oscillates either periodically or chaotically with a period long com- 
pared with that of the forcing. 

Roberts (1973) considered the stability of an unsteady basic flow of a 
conducting fluid in the presence of a parallel magnetic field. The particular 
profile investigated is the classical Kelvin-Helmholtz profile modified by 
the addition of an oscillatory component. Two cases are considered in detail: 
that of a perfectly conducting fluid and that of a poorly conducting fluid. 
The investigation leads in both cases to an equation of the Hill type. It is 
concluded that the magnetic field has a stabilizing influence, but is neverthe- 
less unable to suppress the Kelvin-Helmholtz instability in an unsteady 
(basic) flow. 

Umeki and Kambe (1989; Kambe and Umeki, 1990) studied surface 
waves in a closed container subject to a vertical oscillation. The external 
forcing is equivalent to oscillation of the acceleration of gravity. 

Very few studies on nonlinear electrohydrodynamic Rayleigh-Taylor 
instability have been attempted. Mohamed and E1 Shehawey (1983a, b, 1984) 
studied the nonlinear instability of an interface between two fluids under the 
influence of a periodic electric field. 

EI-Dib (1993) studied nonlinear wave propagation on the surface 
between two superposed magnetic fluids stressed by a tangential periodic 
magnetic field. A stability analysis reveals the existence of both nonresonant 
and resonant cases. He found that the tangential periodic magnetic field 
plays a dual role in the stability criterion, while the field frequency has a 
destabilizing influence. 

More recently current interest in microgravity material processing has 
focused attention upon certain relevant aspects of fluid mechanics in this 
environment. In particular a number of materials processing applications 
involve a fluid-fluid interface. 

Lyell and Roh (1991) studied the effect of a periodic acceleration on 
the interface stability of an idealized fluid configuration, 
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The fluid configuration is multilayered and infinite in extent. E1-Dib 
(1994) considered a theoretical analysis of the subharmonic response of 
two resonant modes of the interfacial gravity-capillary waves between two 
electrified fluids of infinite depth under the influence of a constant horizontal 
electric field. The method of multiple scales was used to derive two parametri- 
cally nonlinear Schrrdinger equations which describe the behavior of the 
disturbed system in the resonance case. One of them contains the first deriva- 
tives in space for a complex conjugate type, while the second contains a 
linear complex conjugate term. A time-dependent solution of a traveling 
wave was obtained. He found that the stability criteria are significantly 
affected by the amplitude of the temporal solution. The acceleration frequency 
plays a dual role in the stability criterion. The results showed that the horizon- 
tal electric field plays a dual role in the resonance case. 

The aim of the work presented here is to extend the approaches of E1- 
Dib (1994) in order to examine theoretically, through a nonlinear perturbation 
analysis, the effect of periodic acceleration to a horizontal interface admitting 
mass and heat transfer, We have therefore considered the Rayleigh-Taylor 
instability problem with mass and heat transfer in a plane geometry using 
Hsieh's (1979) simplified formulation. This formulation has been successfully 
used by Mohamed et  al. (1993). They studied nonlinear electrohydrodynamic 
stability of two superposed dielectric fluids with interfacial mass and heat 
transfer for layers of finite thickess. The fluids are subjected to a constant 
tangential electric field. The stability criterion is expressible in terms of 
various competing parameters representing the equilibrium heat flux, latent 
heat evaporation, gravity, surface tension, densities of the fluids, dielectric 
constants of the fluids, thickness of the layers, and thermal properties of 
the fluids. 

2. BASIC EQUATIONS 

Consider two dielectric, inviscid, incompressible fluids confined 
between two parallel planes y = -h~ and y = h2. The interface is given by 

S(x ,  y, t) = y - ~(x, t) = 0 (1) 

where y = 0 represents the equilibrium interface. The fluid of density p(l), 
dielectric constant ~l), and depth hi occupies the region y < 0, whereas the 
medium y > 0 is occupied by the fluid of density p~2), dielectric constant 
~2), and depth h2. The temperatures at y = h2, y = -hI ,  and y = 0 are T ~2), 
T (I), and T m~, respectively. The fluids are subjected to an external electric 
field Eo acting in the x direction. We work in rectangular coordinates (x, y) 



2082 Elhefnawy, EI-Dib, and Mahmoud 

with the x axis aligned with the mean interface level. The system here is 
stressed by a periodic acceleration in the negative y direction, i.e., 

G = - ( g  + ego cos toot)ey (2) 

The flow is assumed to be irrotational and two-dimensional in each layer. 
The basic equations governing the perturbed velocity potential ~b(v = V~b) are 

Vz~b ~l) = 0 for - h i  < y < ~(x, t) (3) 

V2(b (2) ~-- 0 for ~(x, t) < y < h 2 (4) 

where y = ~(x, t) is the elevation of the free surface, and V = (alOx, O/ay, 0). 
The perturbation produces an additional electric field, which we assume 

to be derived from a potential t~(x, y) satisfying the equations 

VZd~ ") = 0 for - h i  < y < ~(x, t) (5) 

V20 ~2) = 0 for ~(x, t) < y < h2 (6) 

E = Eo - V 0  (7)  

Here d# and t~ are, respectively, the velocity potential and electrostatic potential 
perturbations. The velocity and electrostatic potentials satisfy the conditions 

~Y ]y=-hl L-~Y Jy=h2 = 0 

aq,'"] = [a ,  
- yy Jy=-h, C y,y= 2 = 0 

(8) 

(9) 

The interfacial boundary conditions between the two fluids are as 
follows: 

1. The tangential component of the electric field is continuous at the 
interface, 

-0-s + ~xx = 0 at y = ~ (10 )  

2. The normal electric displacement is continuous at the interface 

E o ~ [ [ ~ l l - ~ x  ~ + ~ = 0  at y = ~  (11) 

where [[.]] represents the jump across the interface. 
We can express the stress tensor as 

I-lij = - I I g i j  + ~EiEj - (l/2)gE2~0 (12) 
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where II = p - (1/2)~E2o, where p is the hydrostatic pressure, which can be 
obtained from Bernoulli's equation, and ~ij is the Kronecker delta. Then the 
interfacial conditions which express the conservation of mass and momentum 
are given by 

p k~+V+") .VS =p at 

and 

po/~ + V+ ~l~ �9 VS)(V+o) �9 VS) 

-njo'(~-~l+~-~2)], , =  1,2, at Y=4  (14) 

where n is the unit normal vector to the interface, ~ is the surface tension 
coefficient, and R~ and R2 are the two principal radii of curvature of the 
interface. The radius of curvature is taken to be positive if the center of 
curvature lies on the side of fluid 2, and negative otherwise. 

Finally, the interfacial condition for energy transfer is given by 

LP~ ' ) (~ t+  V~b(I)'VS) =f (4)  at y = 4  (15) 

The left-hand side of (15) represents the net heat flux from the interface into 
the fluid regions when such a phase transformation is taking place. This 
quantity is taken to be approximately expressible in terms of the balance of 
heat fluxes in the fluid regions as if the system were instantaneously in 
dynamic equilibrium. Let us express f(4) in terms of a power series expansion 
of 4. To the third order of 4, we can write 

f(4) = ~ + ~ "+" 0/-343) (16) 

Note that according to the quasiequilibrium approximation (Hsieh, 
1979), the coefficients ct, tx2, and o~3 are given by 

OL-----~ + 

h 3 + h a 

Otg - h2h2 (h  I + h2) 
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where L is the latent heat released when the fluid is transformed from phase 
1 to phase 2 and 

K(2) (T(0) -  T(2)) K(I ) (T  (l) - T(O)) 
G =  "= 

h2 hi 

is the equilibrium heat flux. 
Here/(1) and/(2)  represent the lower and upper thermal conductivi- 

ties, respectively. 
If fluid 1 is hotter than fluid 2, then L is positive and G is positive since 

T (~) > T (~ > T (2). If fluid 2 is hotter than fluid 1, then L and G are both 
negative. Therefore, in both cases e~ is always positive. 

Equations (3)-(6) and conditions (10)-(15) constitute the governing 
equations of the problem. 

To investigate the nonlinear interaction of small- but finite-amplitude 
waves, we apply the method of multiple scales. To that end, we expand the 
various variables in ascending powers in terms of a small dimensionless 
parameter e characterizing the amplitude of the periodic force. The indepen- 
dent variables x, t are scaled in a like manner, 

T, = r X, = e"x, n = 0, 1, 2 (17) 

3 
g(x, t) = ~ e"g.(Xo, Xl, X2, To, Tl, T2) + 0 ( r  4) (18) 

n=l  

and the variables may expanded as 

3 
�9 (x, t) = ~] e"~,(X0, Xl, X2, To, 71, 72) + O(e 4) (19) 

n=l 

where �9 can be any of the physical quantities ~b, ~. 
Since the boundary conditions (10), (l 1), and (14)-(15) are prescribed 

at the interface y = ~ (x, t), we express all the physical quantities involved 
in terms of Maclaurin series about y = 0. On putting expansions (17) and 
(18) into the set of equations (3)-(15) and equating the coefficients of equal 
powers in e, we obtain the linear as well as the successive higher order 
equations. The hierarchy of equations for each order can be obtained with 
the knowledge of the previous orders. The solution of the first-order problem 
leads to the dispersion relation 

F(to, k) = (to2/k)(p fz) coth kh2 + pfl) coth khO + ( i a~ / k )  

• (coth kh2 + coth kht)  - [EZ0/e*(k)]k(~J 2) -- ~(1))2 

• cosh kh2 cosh khl - g(p(l) _ p(2)) _ k2o . = 0 (20) 
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where 

r = ~(1) sinh khn cosh kh2 + ~(2) sinh kh2 cosh khn 

The dispersion relation (20) is reduced to 

a2(-i00) 2 + an(-ioo) + ao = 0 

where 

(21) 

a2 = pO) coth kh~ + p(2) coth kh2 

an = et(coth khl + coth kh2) 

a0 = {E2ok2(~ (2) - ~(1))2/(~_(I) tanh khn + 5 (2) tanh kh2)} 

+ k3or + gk(p(~) _ p(2)) 

We know from the Routh-Hurwitz criterion (Zahreddine and El Shehawey, 
1988) that necessary and sufficient conditions for stability for the quadratic 
equation (21) are 

at > 0 and a0 > 0 (22) 

since a2 is always positive. 
The conditions at > 0 is trivially satisfied since cx > 0, while the 

condition a0 > 0 gives 

Eo 2 > {[~(t) tanh khl + ~(2) tanh kh2][g(p (2) - p(1)) _ k20.]} 

X {k(~ (2) - ~_(1))2}-1 (23) 

It is clear from (23) that the tangential electric field is stabilizing. For 
values of Eo > Ec, where 

~c  = {[~(1) tanh khl + ~:(2) tanh kh2][g(p c2) - p(n)) _ k2cr]} 

• {k(~(2) _ ~o))2}-1 (24) 

the system is linearly stable. The periodic acceleration has no effect in 
this order. 

3. THE SECOND-ORDER PROBLEM 

The inclusion of a periodic force across the interface yields results 
radically different from the classical case. In the classical Rayleigh-Taylor 
problem, upon admitting mass and heat transfer, the second-order surface 
deflection g2 is modified to be 

~2 = ~20 + ~11 (25)  
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where ~20 represents the elevation in the absence of the periodic acceleration 
as obtained by Mohamed et al. (1993), 

~20 = -2ct2AA + D.A2(XI, X2, Tl, T2) e 2iCkx~176 + C.C. (26) 

The additional term ~H is due to the periodic force and is given by 

~11 = f/l(Xl, X2, TI, 7"2) e i~kx~176 + C.C. (27) 

Here ~t~ denotes the forcing due to oscillation of gravity, which is proportional 
to go and the frequency too. It is found that ~"~1 should satisfy 

[(p~l) coth kh~ + p(2) coth k h 2 )  - -  
0 2 

0 
+ a (coth khl + coth kh2) - -  

OTo 

+ (p(l) coth kh I + p(2) coth kh2)(to2~ - toai) 

- cx(coth khl + coth khz)toi]l'h 

= [ -gok(p  ~ - p(2))A cos tooTo + 2itor(p r coth khl + p(2) coth kh2) 

OA + do) OA ~ ]ei(~o_o, ro , + C.C. 
• or,  oX,/J (28) 

Equation (28) contains terms which correspond to the factor exp (-itorT0). 
The elimination of these terms leads to secular terms that lead to the solvability 
conditions. In omitting these terms, we need to distinguish between two 
cases, the case when the external frequency too is away from the real part of 
the wave frequency to (the nonresonant case) and the case that arises when 
the frequency too approaches 2to~ (to = to~ + ito;). Thus in the nonresonance 
case the following solvability condition is obtained: 

OA dto OA 
- -  + - -  - 0 ( 2 9 )  
OTl dk OXl 

where (dtoldk) is the group velocity. 
With the solvability condition (29) in the nonresonant case the particular 

solution of (28) is 

~ I  = [gokA(p r - P(2))/2tooLt(tooZ - 4to~2)l[too cos tooTo 

- 2itor sin tooTo]Ae -i~ + C.C. (30) 
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In the resonance case the frequency too is assumed to approach 2to: we 
introduce the detuning parameter cr~ 

and hence 

tO o = 2(0 r + 2e(r] (31) 

where 

-i(to0 - cot)To = -i(tor + 2e(r0To 

Thus the solvability condition in this case yields 

0,4 dto OA 
+ - -  - -  i , y ~ e - 2 i ( r l r l  

OT1 dk 0X1 

(32) 

(33) 

'Yo = [gok(p (2) - P( l ) ) /4 torLl ]  (34) 

where Lt is given in the Appendix. 
Equation (33) is the solvability condition in the resonant case. Therefore 

the particular solution of equation (28) is 

l)l = {[go/cA(p (t) - p(2))]/2tao[(OOo + 2o~)L1 + iL2]}e -i(~+'~176 + C.C. (35) 

where L2 is given in the Appendix. 

4. THE THIRD-ORDER PROBLEM 

In this order of the investigation the surface deflection satisfies the 
following equation: 

LI 0 2 L2 0 kE~o(~(2) _ ~(1))2 

(P") - P(2))8 + T OT--~o + T ~oo + ~k2 + ~*(k) 

• cosh khl cosh kh2]~3 

= -  (-~ [L1 +k(p(2)h2coth2kh2 

+ pO)hl coth 2 khl) - k(p(2)h2 + p(t)h])] - -  or~ox~ + L2 + -~ 

X (h 2 c o t h  2 k h  2 "4- hi CO th2 k h l )  -}- - -  
2Li iot 

k k 

02 
(h2 + hi) OToOXI 
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+ 2Li O 2 L2 (9 k(~.(2) _ ~(1))2 
- - - -  + - - - - + i { - 2 k o -  
k OToOTl k OTI e*2(k)E~o 

• [e*(k) cosh khl cosh kh 2 + (~(I)h I cosh 2 kh2 + ~2)h  2 cosh 2 khl)] } 

( ~  o a {  iL2c~176 
3 [-~leikx o _ _ (iL2 + 2(0L1)~22 + i k2 k2 X 3Xl 

k(~(2)  _ ~(~))2 
- 2crk + -  e-*-~k-) E~o[(~(1)hl cosh 2 kh2 + ~2)h2 cosh 2 khO 

h2 ha 
- cosh kh~ cosh kh2] (iotta + (02p (2)) 

k sinh2kh2 k sinh2khl 

x (iotto + to2p (')) ~ 2  + -k- OT--~l + + k I T -  

hi (iet + 2tap (I)) + h2 (iot + 2top(2))) 32A 
+ k sinh 2 kht k sinh 2 kh2 OXIaT1 

r 

ioL2 to2t, ( h, h 2 cosh khl~ 
+ - - ~  + - 7  - ( r  + k2 sinh 2 kh, + k sinh 3 kh, J 

(  coshkh  / 
• (iato + c02p (l)) + k 2 sinh 2 kh2 + k sinh 3 khtJ 

~ ( ~ 2 )  _ ~1))2 
X (iotto + to2p (2)) + E,3(k) [-2khlh2 ~(2) 

X ~(~) cosh kh, cosh kh2 

- kh 2 cosh 2 kh2(~ O) cosh khl cosh kh2 

+ ~j2) sinh khl sinh kh2) 

- kh 2 cosh 2 khl(~ (1) sinh khl sinh kh 2 

+ ~(2) cosh khl cosh kh2) + e*(k)(~(l)hl cosh 2 kh2 + ~2) 

02A -A2AO) e i(kx~176 + C.C. + NST • hE cosh 2 khl)] 

where O is given in the Appendix and NST stands for terms that do not 
produce secular terms. To analyze the particular solution for equation (36), 
we need to avoid the nonuniformity in it. Thus, we need the secular terms 
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to vanish. Two possible cases that produce secular terms are (1) too is away 
from tot and (2) too approaches 2to,. The elimination of the secular terms for 
each case produces its corresponding solvability condition�9 

4.1. Nonresonance Case 

In this case the frequency too is considered to be away from the wave 
frequency tor. Thus the solvability condition of the third order in the nonreso- 
nance case is given by 

�9 OA dto OA 1 d2to c]2A 
t ~ 2  + i ~ a--Xz2 + 2 dk 20X~ + MnA - (QI + iQ2)a 2-~ = 0 (37) 

where 

(13(1) _ p(2))2g2 

MI --- 4to~(p (1) coth khn + 13(2) coth khz)(to 2 + 4(o 2) 

Q1 = -[kOr/2(P (n) coth khl + I 3(2) coth kh2)to~] 

Q2 = -[k0i/2(13 ~ coth khl + 13(2) coth kh2)tor] 

(38) 

(39) 

(40) 

By using the Gardner-Morikawa transformation, we find that equation 
(37) becomes 

i OA + (p~ + iP2) o2A O---x ' ~  + MIA = (01 + ia2) A2~ (41) 

where 

1 d2to 
Pl + iP2 - 2 dk 2 (42) 

The solutions of equation (41) are stable if 

PiQl + P2Q2 > 0 and Q2 < 0 (43) 

The stability in this version of the problem is discussed in Mohamed et 
al. (1993). 

4.2. Resonance Case 

Inspection of the fight-hand side of equation (36) reveals that in addition 
to terms proportional to the factor exp(_ itor) To, secular terms are produced 
by the terms proportional to the factor exp[-i(to0 - tot) To]. In this case we 
express the nearness of to0 to 2to r by introducing a detuning parameter cr~ 
defined according to equation (31); therefore exp[-i(to0 - to~) To] = exp 
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i(-tt~rT 0 - 2itrlT O. The secular terms are eliminated from equation (36) with 
the help of equation (33). Thus the solvability condition in this case is given by 

�9 0.4 do~ 0.4 1 d 2 r  02.4 
t -~z + i dk OX 2 --F 2 dk 20X~l (Q1 + iQ2) A2A + RA 

�9 O~ 
+ [(Sl + iS2) ~ + F1A]e -2i~lrl = 0 (44) 

where R, Sl, $2, F~, M2, and M3 are given in the Appendix. By using the 
Gardner-Morikawa transformation, we find that equation (44) becomes: 

+ (P~ + iP2) 02A [ i OAox - ~  - (Q1 + iQ2) A2"~ + RA + ($1 + iS2) 0_~0~ 

+ FIA ] e -2itrle-l'r = 0 (45) 
d 

5. STABILITY ANALYSIS 

The above form of a parametric nonlinear Schr6dinger equation is new. 
The stability criterion has not been obtained before. The absence of the parts 
P2, (22, and S~ in equation (45) reduces the equation to the same type as 
those obtained by E1-Dib (1993, 1994). We follow the procedure adopted 
there. Thus we assume that equation (45) admits the following time- 
dependent solution: 

A = me -i(glr (46) 

Substituting from equation (46) into equation (45), we get 

(r162 + im2Q2 + Fl exp[ -2 i (R  + Qlm2)]'r = 0 (47) 

By separating real and imaginary parts of equation (47), we obtain 

(r162 + F1 cos[2(R + Qlm2)]a " = 0 (48) 

m2Q2 - F1 sin[2(R + Qlm2)]'r = 0 (49) 

Squaring equations (48) and (49) and adding, we obtain 

m 4 = [F~ - (r162 2 (50) 

m 2 is real when 

F 2 - (o'~/e 2) > 0 
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or  

m 2 = [FZl -- (r (51) 

The solution (46) must be bounded; this requires that 

Q2[F~ - (o'~/~z)] v2 > 0 (52) 

To investigate the stability of the waves, we perturb the solution (46) 
according to 

A = [m + cr "r) + i[3(~, "r)]e -i'~l~-~ (53) 

where ot and [3 are real. Substituting (53) into (45) and neglecting nonlinear 
terms in ot and [3, we get 

0"r - ~  - P2-8--~ + 2Q,m2ot-ff71 S , - - ~ +  $ 2 - ~  

(oo oo )] 
- s ,  + - 213v, = 0 (54)  

Oot + Pl 02[3 02~ 1 --Sl + $ 2 -  
O'r " -~  + P2 " ~  + 2Q2 m2~ - ~ - ~  3~ 

and 

-213F1 + m2Qz Sl - ~  + Sz = 0 (55) 

Equations (54) and (55) are linear. Their the solutions can take the form 

cx(~, 'r) = Ae iqe+~ + C.C. (56) 

and 

[3(~, "r) = Be iq~+~r + C.C.  (57) 

Substituting (56) and (57) into (54) and (55), we get 

~z + bo~ + (bl + ib2) = 0 (58) 

where 

bo = -2(2Q~m 2 - q2P2) (59) 

bl = q4(p2 + p2) + q2[_2m2(Qlp I + 2Q2Pz) - 2P~(r~ -~ + ~ + 4 ]  

+ 4m2(Qlm2crl ~-1 + F~I - o-21e -2)  (60) 

b2 = (2q/FO(~rl~--lSl - m2QzSz)(Qlm 2 - c r t e  - l )  (61) 
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The necessary and sufficient condition for stability requires that 
(Zahreddine and El Shehawey, 1988) 

b0 > 0 (62) 

(b~bl - b2) > 0 (63) 

Conditions (62) and (63) lead to 

{2[F~l -- (trY/e2)] 1/2 - q2p2} > 0 (64) 

q8 + alq6 + a2q4 + a3q2 + a4 > 0 (65) 

where al, a2, a3, and a 4 are given in the Appendix.  
The transition curves separating stable regions f rom unstable regions 

correspond to 

q2 = (2/P2)[F~l _ (tr2/e2)]l/2 (66) 

q8 + alq6 + a2q4 + a3q2 + a4 = 0 (67) 

The transition curves (66) and (67) are plotted in the q2-k plane for a 
sample case. The curves characterized by the symbols • and C) represent 
the above transition curves, respectively. 

Figure 1 represents a system with p(l) = 0.99823 g/cm 3, p~2) = 0.7142 
g/cm 3, ~(~) = 80, ~.(2) = 55, T = 56 dynes/cm, g --- 980.665 cm/sec 2, too = 
63 Hz, eg0 = 9, E0 = 0.0, and ct = 0.3 g /cm 3 sec. The dashed line divides 
the graph into two regions, one corresponding to tOo < 2tOr and the other to 
tOo > 2tO,, respectively. The solid vertical line divides the graph into regions 
corresponding to F~l -- (trl2/e 2) > 0 and F~l - (~r12/~ 2) < 0, respectively. The 

~i < 2~ r > 2~ / ~ 
/ \ 

\ 

. . . . . . . .  , . ~ , �9 , . ~  ~ , . o , , . ~ 

k 
Fig. 1, A system with p(I) = 0 .99823 g /cm 3, p(2) = 0.7142 g/cm ], ~(i) = 80, ~(2) = 55, T = 

56 dynes/cm, g = 980 cm/sec 2, oh) = 63 Hz, ego = 9, Eo = 0.0, and ct = 0.3 g/cm 3 sec. 
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Z.._I .... 
k 

Fig. 2. The same system considered in Fig. 1, but with ~o = 64 Hz. 

region for which ~ - ((r~/e 2) < 0 is an unstable region, but the region for 
which F~l -- (cr~/e 2) > 0 is stable if it satisfies the inequalities (64) and (65). 
The symbol u represents the unstable region. The regions S~ and $2 represent 
the stable regions for tOo < 2tOt and to0 > 2to, respectively. 

Figure 2 represents the same system as in Fig. 1, but with too = 64 Hz. 
It is shown that the resonance point is shifted to the right-hand side. As too 
increases, the stable region S~ increases, while $2 decreases. It is clear that 
the frequency tOo plays a dual role in the stability criterion. 

Figure 3 represents the same system as in Fig. 1, but with E0 = 0.4 
dynes/esu. It is clear that in the presence of an electric field the resonance 
point is shifted to the left. Also, the solid vertical line is shifted to the left. 
A comparison between Fig. 1 and 3 shows that, in the presence of an electric 

5 .  

4.5- 

4 

3.5 
~ 3  

2.5 
2 

1,5 

1 
0.5  

0 

O 

I 

: Wo > 2W E 
% ~  < 2t~ I 

~ U i U 

ill II (O �9 cl Io IO (0 @ IDli(l IO �9 �9 ~ to (O ~ 

Fig. 3. The same system considered in Fig. l, but with Eo = 0.4 dynes/esu. 

(0 
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field, the stable region $1 increases, while $2 decreases.  Thus the electric 
field plays a dual role in the stability criterion. 

6 .  C O N C L U S I O N  

The nonlinear e lec t rohydrodynamic  Ray le igh-Tay lo r  instability with 
mass  and heat transfer is studied by imposing a vertical oscillating force and 
a horizontal electric field. The necessary and sufficient conditions for stability 
are obtained. Numerical  calculations show that the external frequency and 
the electric field play dual role in the stability criterion. 

A P P E N D I X  

The following quantities are used in the text: 

R = [ _ g ~ ( p ~ O  _ p(2 ) )214L~ ta~ ] { [ ta f l ( ta  ~ _ 4ta~)] 

+ [(tao - tar)/2(ta0 -- 2tar)] + (l/8tar)} 

S1 = [gokZ(p(O - O(2))/4L~taz]([tafltao(ta o - 2tar)] 

• { ( -2M3Li Ik ) ( tao  - tar) 

- (2too/k2)(tao - tar)[k(p(2)h2 cothZkh2 + p(1)h I coth2khl)  - k(p(2)h2 

+ P~ - [(tao - t a r ) / k 2 ]  

• [ak(h2 coth2kh2 + hi coth2kh0 - otk(hl + h2)] 

+ (2toflk)(2talLl - L2)} + (1/2)[(l/k2)(L2 - 2taiLl) + (hl /k  sinh 2 khO 

• ( -2p(Ota i  + ct) + (h2/k sinh 2 kh2)(-2p(2)tai  + or)]) 

$2 = [gok2(p (1) _ p (2))/4L2ta2]([ta,/tao(ta0 _ 2tar)] { ( -  2M2Ll/k)(oJo - tar) 

- [(tOo - tar) 2 + tai](l lk2)[Ll+ k(p(2)h2 coth2kh2 + p(1)h I cothZkhl) 

- k(p(2)h2 + p(l)hl)] -- (tai/k2)[ctk(h2 coth2khz + hi coth2khi) - otk(hl 

+ h2)] + [2(Llta~ + L2tai)/k 2] - (2g/k)(p (l) - p(2)) _ [Ee0/e.(k)](e(2) 

_ ~(1))2 cosh khl cosh kh2 - [E2o/~*2(k)]k(~ (2)) - ~(l))2(hl~(t) 

• cosh 2 kh2 + hz~: (2) cosh 2 khO} - L iDi  + (1/2)[(2Lltar/k  2) 

+ (2p(~ sinh 2 kht)  + (2p(2)ta,h2/k sinh 2 kh2)]) 

Fl = [g0k(p 0) - p(2))(tao - 2tar)/8eta~Ll] 
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M2 = (l/2Llo~){(O~r 2 - o~2)[(p~ 2 khl) + (p(2)h2/sinh 2 kh2) 

+ (Lllk)] - o~i[(txhzlsinh kh2) + (othl/sinh khO + (Lzlk)] + 2kcr 

+ [E~k(~ (2) - ~~ (1) cosh  2 khz + h2~ (2) cosh  2 kht) 

+ cosh  khl cosh  kh2]} 

M3 = ( l l2LO[(hl ls inh z khl)(2O~rp (l) + et) + (hzlsinh 2 khz)(2O~rp(2) + ot)] 

LI = (p(l) coth  khl + p(2) coth  kh2) 

Lt = ot(coth khl + coth  kh2) 

a~ = [1/Pz2(P~ + P2)]{-4mZQzP2(P~ + P~) + P~[-2mZ(QiPt  + 202P2) 

- 2Pl(rl~ - l  + (S 2 + S~)]} 

a2 = [lIPZ(PZj + Pz)]{4mZQZ(P~ + P~) 

- P~[ -2m2(QiP l  + 2Q2Pz) - 4mEQzPz 

• [ - 2 m a ( Q l P l  + 2QzP2) - 2 P l a l e  - l  + ( ~  + S~2)] 

+ 4P~(Qlm2crte -I + F~ - aTe~ -2)} 

a3 = [IIP~(P 2 + P2)l{(4mZQ2 + P2)[-Zma(Q~P~ + 2QzP2) - 2PlO' ,e  -~ 

+ (S~ +S~)]  - ( l lF~)((r le- lSl  -- m2Q2Sz)Z(mZQl - ( t i e - l )  z} 

a4 = [lIPZz(P z + P2)][16m2QE(m2Q2 - P2)(m2Qlcrle -I  + F~l - cr~e2)] 

and 

0 = ~{-(2ietoLzodk)(coth khz + coth  khO 

+ ietco(cothZkha + cothZkhl) 

+ (et2/2pO)sinh 2 khO - (et2/2p(Z)sinh z kh2) 

- -  13(2)~212 + (3/sinh 2 kh2)] 

+ p(l)to2[2 + (3/sinh 2 khl)] - [kEE~o(~ 2 - ~(l))/~*2(k)~*(2k)] 

• [-2~~162 sinh 2k(hl + h2) sinh k(hl + h2) 

+ ~*(2k)~.O)~ (2) X sinh 2 k(h~ + hE) -- 4e*(k) 

• (~(2) _ ~(~))2sinh 2khl sinh 2kh2 

• sinh kh~ sinh kh2 - r (2) - ~"))2sinh 2 kh~ sinh 2 kh2 
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+ 2~*(k)(~- (z) - ~-(t))(~(2)cosh kh2 sinh 2khl sinh khl cosh  2kh 2 

- ~ ~  kh2 sinh 2kh2 cosh  kht cosh  2khO + e*2(k)e*(2k)]} 

+ { - 3 i e t a 3 ( c o t h  khl + coth  kh2) + iketco[(3 - coth2kh2)coth kh2 

+ (3 - cothZkhz)coth kh2] + p(Z)kto212 - (2/sinh z khz)]coth kh2 

+ p(l)kco2[2 - (2/sinh 2 k h 0 ] c o t h  khl 

- iototztO[(cosh 2kh2/sinh z kh2) - (cosh 2khllsinh 2 khl)] 

- a2k[(coth kht/p~ z khO + (coth khz/p(Z)sinh 2 kh2)] 

- (ot2ot2/p(l))[3 - (cosh 2kh~/2 sinh 2 khO 

- (ct2Otz[p(2))[(cosh 2kh212 sinh z kh2) - 3] - (3/2)k4tr 

+ [k3E~o(~J 2) - ~(l))21e*2(k)e*(2k)][-4~tl)~t2) cosh  2khl 

• cosh  2kh2 sinh z k(hl + h2) + 6~:~ ~2) sinh khl sinh kh2 

X sinh k(hl + h2) sinh 2k(h~ + h2) 

+ 2(~(2) _ ~(2)) sinh khl sinh kh2 

• ( _ ~ 2 )  cosh  kh2 cosh  2kh2 sinh khl sinh 2khl + ~tl) cosh  khl 

x cosh 2khl sinh kh2 sinh 2kh2) + 4(~ ~z) - ~l))2sinh 2kh2 

• sinh 2khl sinh 2 khl sinh 2 kh2 - 4e*(k)e*(2k)  sinh khl sinh kh2] 

+ 4ictetzto[(llp (z)) coth k h  2 - ( l ip  (l)) coth khl] + 2ietzetto(cothZkh2 

- coth2kh~) + 2 0 t z c o 2 ( p ( 2 ) c o t h Z k h 2  - pO)cothZkhl) - [2EZetz/e*Z(k)] 

X (~.t2) _ ~.(1))[k2~0)~(2) sinh z k(hl + h2) + (~.(2) _ ~.o))2sinh2 khl 

• sinh 2 khz + 2ct2ct2[(l/p 0)) - (I/p(2))] - -  2Otz6oZ(p (z) - -  D (1)) 

+ 2k2ot2 X 2 k2et2 E2 (~(2) - -  ~ ( I ) ) }  a2~  

1) = {-(iota2to/k)(coth 2kh2 + coth 2kh~) - 2itoct(coth 2kh2 coth kh2 

- coth 2kh~ coth kh~) + co2(p ~ coth2kh~ - p(2) coth 2 kh2) 

+ [2k2E 2 X (~(2) _ ~(~))/e,2(k ) e,(2k)][e,(k)~.(~)~(2)sinh k(h~ + h2) 

X sinh 2k(ht + h2) + (~(2) _ ~(~))ze*(k) sinh 2kh~ sinh 2kh2 

• sinh khi sinh kh2 + (l/4)e*(2k)(~ (2) - ~o))(~(~) cosh 2kh2 
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• sinh 2 khl - ~:(l) cosh 2khl sinh 2 kh2) -e*2(k)e*(2k)] 

+ (ot2/pO)p(2))(p(l)_ p(2)) + (tx2/2p(l)p(2))[(p(l)/sinh2 kh2) 

- (p(Z)/sinh2 khO] + (ietto/sinh 2 kh 2 sinh 2 khO(sinh 2 khl 

- sinh 2 kh2) + ( c o 2 / 2  sinh 2 kh2 sinh 2 khi)[p ~L) sinh 2 kh 2 - -  p(2) 

• sinh z khl]}/{(2to21k)(p ~2) coth 2kh2 + p (I) coth 2khO 

+ (ietco/k)(coth 2kh2 + coth 2khO - [2kEolr 

• (~(2) _ ~(~))2 sinh 2khl sinh 2kh2 + g(p(2) _ po)) _ 4k2o -} 

r = ~(l) cosh 2kh2 sinh 2kh~ + ~(2) sinh 2kh 2 cosh  2kh~ 
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